
Just the Essentials of Linear Algebra

Vector: A set of ordered numbers, written, by default, as a column. Ex., 
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Transpose of a Vector: The transpose of vector
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, written 
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, is defined as the corresponding ordered row of numbers. Ex., the transpose of the vector 
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Vector Addition: Addition is defined componentwise. Ex., for vectors  
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 and 
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Vector Multiplication: The inner product (or dot product) of vectors 
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 and 
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 is defined as 
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Note 1: The inner product of two vectors is a number!

Note 2: 
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Orthogonal: Vectors 
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 and 
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 are orthogonal if 
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. The geometrical interpretation is that the vectors are perpendicular. Orthogonality of vectors plays a big role in linear models.
Length of a Vector: The length of vector 
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 is given by 
[image: image17.wmf]T

vvv

=

. This extends the Pythagorean theorem to vectors with an arbitrary number of components. Ex., 
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Matrices: 
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is an m by n matrix if it is an array of numbers with m rows and n columns. Ex., 
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is a 4x2 matrix.
Matrix Addition: Matrix addition is componentwise, as for vectors. 

Note: A vector is a special case of a matrix with a single column (or single row in the case of its transpose).

Matrix Multiplication: If A is m x n and B is n x p, the product AB is defined as the array of all inner products of row vectors of A with column vectors of B. Ex., If 
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Transpose of a Matrix: The transpose of m x n matrix A is the n x m matrix AT obtained by swapping rows for columns in A. Ex., If 
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Transpose of a Product: (AB)T = BTAT
Symmetric Matrix: The square matrix 
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 is symmetric if aij = aji for all 1 
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:  a12 = a21 = -3; a13 = a31 = 1; a23 = a32 = -2.           (Note: If
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is symmetric, then
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Theorem: for any m x n matrix A,  ATA is an n x n symmetric matrix, and AAT is an m x m symmetric matrix.
Linear Independence: The set of n vectors 
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form a linearly independent set if the linear combination 
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implies that all of the constant coefficients, ci , equal zero.
rank(A): The rank of matrix A, rank(A), is the number of linearly independent columns (or rows) in the matrix. A matrix with all columns, or all rows, independent is said to be "full rank." Full rank matrices play an important role in linear models.
Theorem about Rank: rank(ATA) = rank(AAT) = rank(A). This theorem will be used in regression.

Inverse of a Matrix: The inverse of the n x n square matrix A is the n x n square matrix A-1 such that AA-1 = A-1A = I, where I is the n x n "Identity" matrix, 
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Theorem: The n x n square matrix A has an inverse if and only if it is full rank, i.e., rank(A) = n.

Theorem: The invertible 2 x 2 matrix 
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 has 2 x 2 inverse
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. Ex., if 
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. You should carry out the products AA-1 and A-1A to confirm that they equal 
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Solving a System of n Linear Equations in n Unknowns
The system of n Linear Equations in n Unknowns,  
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 , can be represented by the matrix equation Ax = b , where 
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, 
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. The System has a unique solution if and only if A is invertible, i.e., A-1 exists. In that case, the solution is given by x = A-1b . 
Representing the Simple Linear Regression Model as a Matrix Equation

For a sample of n observations on the bivariate distribution of the variables X and Y, the simple linear regression model 
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 leads to the system of n equations 
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 , 
which can be written 
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. The shorthand for this is 
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, where the n x 2 matrix 
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is called the "design" matrix because the values of the variable X are often fixed by the researcher in the design of the experiment used to investigate the relationship between the variables X and Y. Note: Since 
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refers to the design matrix above, we will use
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to refer to the vector of values for X, 
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Fitting the Best Least Squares Regression Line to the n Observations
Ideally, we would solve the matrix equation
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for the vector of regression coefficients
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, i.e., the true intercept
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and true slope
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in the model 
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. In practice, however, this is never possible because the equation
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has no solution! (Why?) When faced with an equation that we cannot solve, we do what mathematicians usually do: we find a related equation that we can solve. First, since we don't know the errors in our observations, we forget about the vector of the errors 
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. (Here, it is important that we not confuse the errors 
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, which we never know, with the residuals ei associated with our estimated regression line.)
Unable to determine the parameters 
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, we look to estimate them, i.e., solve for
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in the matrix equation 
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, but the system involves n equations in the two unknowns
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. If you remember your algebra, overdetermined systems of linear equations rarely have solutions. What we need is a related system of linear equations that we can solve. (Of course, we'll have to show that the solution to the new system has relevance to our problem of estimating 
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.) Finally (drum roll please), the system we'll actually solve is, 
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Next, we show what the system above looks like, and, as we go, we'll see why it's solvable and why it's relevant. 
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Now we're in a position to write out the equations for the system 
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If these equations look familiar, they are the equations derived in the previous notes by applying the Least Squares criterion for the best fitting regression line. Thus, the solution to equation to matrix equation (1.1) is the least squares solution to the problem of fitting a line to data! (Although we could have established this directly using theorems from linear algebra and vector spaces, the calculus argument made in Part I of the regression notes is simpler and probably more convincing.) Finally, the system of two equations in the two unknowns
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has a solution! 
To solve the system
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, we note that the 2 x 2 matrix
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has an inverse. We know this since rank(
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) = rank(
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) = 2 , and full rank square matrices have inverses. (Note: rank(
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) = 2 because the two columns of the matrix
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are linearly independent.) The solution has the form,
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, and, after a fair amount of algebra, equation (1.6) returns the estimated intercept
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and slope
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given in Part I of the regression notes: 
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Example

Although you will have plenty of opportunities to use software to determine the best fitting regression line for a sample of bivariate data, it might be useful to go through the process once by hand for the "toy" data set: 
	x
	1
	2
	4
	5

	y
	8
	4
	6
	2


Rather than using the equations (1.7) and (1.8), start with
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The (Least Squares) Solution to the Regression Model   
The equation
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is the estimate to the simple linear regression model 
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is the least squares estimate of the intercept and slope of the true regression line
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given by equations (1.8) and (1.7), respectively, and
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The Hat Matrix

A useful matrix that shows up again and again in regression analysis is the n x n matrix 
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puts a "hat" on the vector
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The hat matrix
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has many nice properties. These include:

· 
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is symmetric, i.e., 
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· The matrix 
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is the n x n identity matrix, is both symmetric and idempotent. 

The Error Sum of Squares, SSE, in Matrix Form
From the equation
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. The error sum of squares, SSE, is just the squared length of the vector of residuals, i.e., SSE
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The Geometry of Least Squares
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One of the attractions of linear models, and especially of the least squares solutions to them, is the wealth of geometrical interpretations that spring from them. The n x 1 vectors
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, but we can show a much more surprising result that will eventually lead to powerful conclusions about the sums of squares SSE, SSR, and SST. 
First, we have to know where each of the vectors
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· The vector of observations
[image: image137.wmf]Y

has no restrictions placed on it and therefore can lie anywhere in
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is restricted to the two-dimensional subspace of
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spanned by the columns of the design matrix
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, called (appropriately) the column space of
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· We will shortly show that
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lives in a subspace of
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.   

Next, we derive the critical result that the vectors
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, where we made repeated use of the fact that
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Combining the facts that the vectors
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and  are orthogonal to each other, we conclude that 
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A slight modification of the argument above shows that the vectors
[image: image169.wmf]ˆ

-

YY

and
[image: image170.wmf]e

sum to
[image: image171.wmf]-

YY

and  are orthogonal to each other, whence we conclude that 
[image: image172.wmf]ˆ

-

YY

and
[image: image173.wmf]e

form the legs of a right triangle (in
[image: image174.wmf]n

¡

) with hypotenuse
[image: image175.wmf]-

YY

. By the Pythagorean Theorem for right triangles, 
 MACROBUTTON MTPlaceRef \* MERGEFORMAT (1.11)


[image: image176.wmf](

)

(

)

(

)

(

)

ˆˆ

T

T

T

YYYYeeYYYY

--+=--


or equivalently, SSR + SSE = SST. This last equality is the famous one involving the three sums of squares in regression.

We've actually done more than just derive the equation involving the three sums of squares. It turns out that the dimensions of the subspaces the vectors live in also determines their "degrees of freedom," so we've also shown that SSE has n - 2 degrees of freedom because the vector of residuals,
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, is restricted to an n - 2 dimensional subspace of
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 . (The term "degrees of freedom" is actually quite descriptive because the vector
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is only "free" to assume values in this n - 2 dimensional subspace.)   
The Analysis of Variance (ANOVA) Table

The computer output of a regression analysis always contains a table containing the sums of squares SSR, SSE, and SST. The table is called an analysis of variance, or ANOVA, table for reasons we will see later in the course. The table has the form displayed below. (Note: The mean square of the sum of squared residuals is the "mean squared error" MSE, the estimate of the variance
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s

of the error variable
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in the regression model.)
	Source                      Degrees of Freedom (df)        Sums of Squares (SS)       Mean Square (MS) = SS/df

	Regression                                 1                                
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Residual                                   n - 2                             
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	Total                                         n - 1                             
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